Section 14.2

Continuity for Two Variables
At what points (x, y) in the plane are the functions in Exercises 31-34 continuous?
32. a. $f(x, y)=\frac{x+y}{x-y}$
b. $f(x, y)=\frac{y}{x^{2}+1}$

Solution:

32.

(a) All (x, y) so that $x \neq y$
(b) All (x, y)

Continuity for Three Variables

At what points (x, y, z) in space are the functions in Exercises 35-40 continuous?
37. a. $h(x, y, z)=x y \sin \frac{1}{z}$
b. $h(x, y, z)=\frac{1}{x^{2}+z^{2}-1}$

Solution:

37. (a) All (x, y, z) with $z \neq 0$
(b) All (x, y, z) with $x^{2}+z^{2} \neq 1$

In Exercises 67 and 68, define $f(0,0)$ in a way that extends f to be continuous at the origin.
68. $f(x, y)=\frac{3 x^{2} y}{x^{2}+y^{2}}$

Solution:

68. $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x y^{2}}{x^{2}+y^{2}}=\lim _{r \rightarrow 0} \frac{(3 r \cos \theta)\left(r^{2} \sin ^{2} \theta\right)}{r^{2}}=\lim _{r \rightarrow 0} 3 r \cos \theta \sin ^{2} \theta=0 \Rightarrow$ define $f(0,0)=0$

Using the Limit Definition

Each of Exercises 69-74 gives a function $f(x, y)$ and a positive number ϵ.
In each exercise, show that there exists a $\delta>0$ such that for all (x, y),

$$
\sqrt{x^{2}+y^{2}}<\delta \Rightarrow|f(x, y)-f(0,0)|<\epsilon
$$

73. $f(x, y)=\frac{x y^{2}}{x^{2}+y^{2}}$ and $f(0,0)=0, \quad \epsilon=0.04$

Solution

73. Let $\delta=0.04$. Since $y^{2} \leq x^{2}+y^{2} \Rightarrow \frac{y^{2}}{x^{2}+y^{2}} \leq 1 \Rightarrow \frac{|x| y^{2}}{x^{2}+y^{2}} \leq|x|=\sqrt{x^{2}} \leq \sqrt{x^{2}+y^{2}}<\delta \Rightarrow|f(x, y)-f(0,0)|$

$$
=\left|\frac{x y^{2}}{x^{2}+y^{2}}-0\right|<0.04=\epsilon .
$$

Each of Exercises 75-78 gives a function $f(x, y, z)$ and a positive number ϵ. In each exercise, show that there exists a $\delta>0$ such that for all (x, y, z),

$$
\sqrt{x^{2}+y^{2}+z^{2}}<\delta \Rightarrow|f(x, y, z)-f(0,0,0)|<\epsilon
$$

78. $f(x, y, z)=\tan ^{2} x+\tan ^{2} y+\tan ^{2} z, \quad \epsilon=0.03$

Solution:

78. Let $\delta=\tan ^{-1}(0.1)$. Then $|x|<\delta,|y|<\delta$, and $|z|<\delta \Rightarrow|f(x, y, z)-f(0,0,0)|=\left|\tan ^{2} x+\tan ^{2} y+\tan ^{2} z\right|$

$$
\leq\left|\tan ^{2} x\right|+\left|\tan ^{2} y\right|+\left|\tan ^{2} z\right|=\tan ^{2} x+\tan ^{2} y+\tan ^{2} z<\tan ^{2} \delta+\tan ^{2} \delta+\tan ^{2} \delta=0.01+0.01+0.01=0.03=\epsilon .
$$

