Section 14.2

Continuity for Two Variables

At what points (x, y) in the plane are the functions in Exercises 31–34 continuous?

32. a.
$$f(x, y) = \frac{x + y}{x - y}$$

b.
$$f(x, y) = \frac{y}{x^2 + 1}$$

Solution:

32. (a) All
$$(x, y)$$
 so that $x \neq y$

(b) All
$$(x, y)$$

Continuity for Three Variables

At what points (x, y, z) in space are the functions in Exercises 35–40 continuous?

37. a.
$$h(x, y, z) = xy \sin \frac{1}{z}$$

37. a.
$$h(x, y, z) = xy \sin \frac{1}{z}$$
 b. $h(x, y, z) = \frac{1}{x^2 + z^2 - 1}$

Solution:

37. (a) All
$$(x, y, z)$$
 with $z \neq 0$

(b) All
$$(x, y, z)$$
 with $x^2 + z^2 \neq 1$

In Exercises 67 and 68, define f(0, 0) in a way that extends f to be continuous at the origin.

68.
$$f(x, y) = \frac{3x^2y}{x^2 + y^2}$$

Solution:

68.
$$\lim_{(x,y)\to(0,0)} \frac{3xy^2}{x^2+y^2} = \lim_{r\to 0} \frac{(3r\cos\theta)(r^2\sin^2\theta)}{r^2} = \lim_{r\to 0} 3r\cos\theta\sin^2\theta = 0 \implies \text{ define } f(0,0) = 0$$

Using the Limit Definition

Each of Exercises 69–74 gives a function f(x, y) and a positive number ϵ . In each exercise, show that there exists a $\delta > 0$ such that for all (x, y),

$$\sqrt{x^2 + y^2} < \delta \implies |f(x, y) - f(0, 0)| < \epsilon.$$

73.
$$f(x, y) = \frac{xy^2}{x^2 + y^2}$$
 and $f(0, 0) = 0$, $\epsilon = 0.04$

Solution

73. Let
$$\delta = 0.04$$
. Since $y^2 \le x^2 + y^2 \Rightarrow \frac{y^2}{x^2 + y^2} \le 1 \Rightarrow \frac{|x|y^2}{x^2 + y^2} \le |x| = \sqrt{x^2} \le \sqrt{x^2 + y^2} < \delta \Rightarrow |f(x, y) - f(0, 0)|$
$$= \left| \frac{xy^2}{x^2 + y^2} - 0 \right| < 0.04 = \epsilon.$$

Each of Exercises 75–78 gives a function f(x, y, z) and a positive number ϵ . In each exercise, show that there exists a $\delta > 0$ such that for all (x, y, z),

$$\sqrt{x^2 + y^2 + z^2} < \delta \implies |f(x, y, z) - f(0, 0, 0)| < \epsilon.$$

78.
$$f(x, y, z) = \tan^2 x + \tan^2 y + \tan^2 z$$
, $\epsilon = 0.03$

Solution:

78. Let
$$\delta = \tan^{-1}(0.1)$$
. Then $|x| < \delta$, $|y| < \delta$, and $|z| < \delta \Rightarrow |f(x, y, z) - f(0, 0, 0)| = |\tan^2 x + \tan^2 y + \tan^2 z|$

$$\leq |\tan^2 x| + |\tan^2 y| + |\tan^2 z| = \tan^2 x + \tan^2 y + \tan^2 z < \tan^2 \delta + \tan^2 \delta + \tan^2 \delta = 0.01 + 0.01 + 0.01 = 0.03 = \epsilon.$$